【第1部:論理】https://www.youtube.com/watch?v=MVSffAkYyuc
数学書をきちんと読むためには、論理、集合、代数の3つの初歩的な知識が必要です。
今回は、第1部の論理に続き、集合の解説動画です。
0:00 イントロ
0:22 集合の重要性
1:15 集合と要素
2:18 外延的記法、空集合
4:46 数の集合
7:17 内包的記法、置換型記法
11:01 部分集合⊆
15:06 集合が等しい=
17:14 和集合∪、共通部分∩
18:10 補集合、差集合、全体集合
19:15 順序組、直積集合
22:27 関数、定義域、終域
24:57 写像
26:38 像
29:07 逆像
30:11 全射
31:59 単射
34:02 全単射
35:03 逆写像
36:14 合成写像
36:56 濃度
39:02 可算集合、非可算集合
41:55 点列、関数列、集合族
43:52 集合族の和、共通部分
44:53 集合族の直積、公理的集合論
45:54 べき集合、集合系
47:34 商集合、同値関係
50:10 まとめ
【目標とする数学書】
齋藤「線型代数入門」https://amzn.to/3SXe0wF
杉浦「解析入門Ⅰ」 https://amzn.to/3SH0CMS
【関連する本】
嘉田「論理と集合から始める数学の基礎」 https://amzn.to/46wA7gp
竹山「数学書の読みかた」 https://amzn.to/49Vnv5v
Hammack「Book of Proof」 https://amzn.to/3RkiH2c
集合・位相入門 (松坂和夫 数学入門シリーズ 1) https://amzn.to/3MNj5nj
Enderton「A Mathematical Introduction to Logic」https://amzn.to/4a96Hbs
Kunen「Set Theory An Introduction To Independence Proofs」 https://amzn.to/40YiWDw
代数系入門 (松坂和夫 数学入門シリーズ 3) https://amzn.to/3N0im2o
Lang「Algebra」https://amzn.to/3N7d2dr
【関連動画】
【Twitter】
https://twitter.com/kimu3_slime