Organizations are increasingly exploring lakehouse architectures with Databricks to combine the best of data lakes and data warehouses. Databricks SQL Analytics introduces new innovation on the “house” to deliver data warehousing performance with the flexibility of data lakes. The lakehouse supports a diverse set of use cases and workloads that require distinct considerations for data access. On the lake side, tables with sensitive data require fine-grained access control that are enforced across the raw data and derivative data products via feature engineering or transformations. Whereas on the house side, tables can require fine-grained data access such as row level segmentation for data sharing, and additional transformations using analytics engineering tools. On the consumption side, there are additional considerations for managing access from popular BI tools such as Tableau, Power BI or Looker.
The product team at Immuta, a Databricks partner, will share their experience building data access governance solutions for lakehouse architectures across different data lake and warehouse platforms to show how to set up data access for common scenarios for Databricks teams new to SQL Analytics.
Connect with us:
Website: https://databricks.com
Facebook: https://www.facebook.com/databricksinc
Twitter: https://twitter.com/databricks
LinkedIn: https://www.linkedin.com/company/databricks
Instagram: https://www.instagram.com/databricksinc/ Databricks is proud to announce that Gartner has named us a Leader in both the 2021 Magic Quadrant for Cloud Database Management Systems and the 2021 Magic Quadrant for Data Science and Machine Learning Platforms. Download the reports here. https://databricks.com/databricks-named-leader-by-gartner