MENU

Fun & Interesting

Covariance Matrix - Explained

DataMListic 11,769 7 months ago
Video Not Working? Fix It Now

In this video, we talk about what the covariance matrix is and what the values in it represents. *References* ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Multivariate Normal (Gaussian) Distribution Explained: https://youtu.be/UVvuwv-ne1I Covariance vs Correlation Explained: https://youtu.be/uW0TapQ6UQU *Related Videos* ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Marginal, Joint and Conditional Probabilities Explained: https://youtu.be/xu-HhF3SpbE Why We Don't Use the Mean Squared Error (MSE) Loss in Classification: https://youtu.be/bNwI3IUOKyg The Bessel's Correction: https://youtu.be/E3_408q1mjo Gradient Boosting with Regression Trees Explained: https://youtu.be/lOwsMpdjxog P-Values Explained: https://youtu.be/IZUfbRvsZ9w Kabsch-Umeyama Algorithm: https://youtu.be/nCs_e6fP7Jo Eigendecomposition Explained: https://youtu.be/ihUr2LbdYlE *Contents* ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ 00:00 - Intro 00:16 - Variance in one dimension 00:53 - Variance in multiple dimensions 01:16 - The main diagonal elements 01:54 - The off diagonal elements 02:35 - Covariance vs correlation 03:03 - Outro *Follow Me* ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ ? Twitter: @datamlistic https://twitter.com/datamlistic ? Instagram: @datamlistic https://www.instagram.com/datamlistic ? TikTok: @datamlistic https://www.tiktok.com/@datamlistic *Channel Support* ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ The best way to support the channel is to share the content. ;) If you'd like to also support the channel financially, donating the price of a coffee is always warmly welcomed! (completely optional and voluntary) ► Patreon: https://www.patreon.com/datamlistic ► Bitcoin (BTC): 3C6Pkzyb5CjAUYrJxmpCaaNPVRgRVxxyTq ► Ethereum (ETH): 0x9Ac4eB94386C3e02b96599C05B7a8C71773c9281 ► Cardano (ADA): addr1v95rfxlslfzkvd8sr3exkh7st4qmgj4ywf5zcaxgqgdyunsj5juw5 ► Tether (USDT): 0xeC261d9b2EE4B6997a6a424067af165BAA4afE1a #covariance #variance #covariancematrix #correlation #statistics

Comment