MENU

Fun & Interesting

Cyber&Data: Introduction to Splunk and Machine Learning - Part 1

Bill Buchanan OBE 1,338 5 years ago
Video Not Working? Fix It Now

The main content is here: https://asecuritysite.com/cyberdata/ch13 Introduction to Splunk: https://youtu.be/bOQmd6B8jGo Splunk and ML Part 1: https://www.youtube.com/watch?v=MYg1dhp1rzo Splunk and ML Part 2: https://www.youtube.com/watch?v=H-qkbIH0v-c == Anomaly Detection | inputlookup iris.csv | fit LocalOutlierFactor petal_length petal_width n_neighbors=10 algorithm=kd_tree metric=minkowski p=1 contamination=0.14 leaf_size=10 Link. | inputlookup iris.csv | fit OneClassSVM * kernel="poly" nu=0.5 coef0=0.5 gamma=0.5 tol=1 degree=3 shrinking=f into TESTMODEL_OneClassSVM | inputlookup call_center.csv | fit DensityFunction count by "source" into mymodel ==Prediction | inputlookup iris.csv | fit AutoPrediction random_state=42 petal_length from * max_features=0.1 into auto_classify_model test_split_ratio=0.3 random_state=42 | inputlookup iris.csv | fit BernoulliNB petal_length from * into TESTMODEL_BernoulliNB alpha=0.5 binarize=0 fit_prior=f | inputlookup iris.csv | fit DecisionTreeClassifier petal_length from * into sla_ MOD | inputlookup iris.csv | fit GaussianNB petal_length from * into MOD | inputlookup iris.csv | fit LogisticRegression petal_length from * into MOD | inputlookup iris.csv | fit MLPClassifier petal_length from * into MOD | inputlookup iris.csv | fit RandomForestClassifier petal_length from * into MOD | inputlookup iris.csv | fit SGDClassifier petal_length from * into MOD | inputlookup iris.csv | fit SVM petal_length from * into MOD. | inputlookup iris.csv | fit GradientBoostingClassifier petal_length from * into MOD == Prediction (Numeric) | inputlookup track_day_missing.csv | fit AutoPrediction batteryVoltage target_type=numeric test_split_ratio=0.7 from * into PM | inputlookup track_day_missing.csv | fit DecisionTreeRegressor batteryVoltage from * into PM | inputlookup track_day_missing.csv | fit ElasticNet batteryVoltage from * into EN | inputlookup track_day_missing.csv | fit GradientBoostingRegressor batteryVoltage from * into GB | inputlookup track_day_missing.csv | fit KernelRidge batteryVoltage from * into KR | inputlookup track_day_missing.csv | fit Lasso batteryVoltage from * into LA | inputlookup track_day_missing.csv | fit LinearRegression batteryVoltage from * into LR | inputlookup track_day_missing.csv | fit RandomForestRegressor batteryVoltage min_samples_split=30000 from * into RF | inputlookup track_day_missing.csv | fit Ridge batteryVoltage from * into RD | inputlookup track_day_missing.csv | fit SGDRegressor batteryVoltage from * into SG | inputlookup app_usage.csv | fit SystemIdentification Expenses from HR1 HR2 ERP dynamics=3-2-2-3 layers=64-64-64 == Cluster | inputlookup iris.csv | fit Birch petal_length k=3 partial_fit=true into MOD | inputlookup iris.csv | fit DBSCAN petal_length min_samples=4 | inputlookup iris.csv | fit GMeans petal_length random_state=42 into MOD3 [based on k-means] | inputlookup iris.csv | fit KMeans petal_length k=3 into MOD4 | inputlookup iris.csv | fit SpectralClustering petal_length k=3 | inputlookup iris.csv | fit XMeans petal_length == Feature Extraction | inputlookup track_day.csv | fit FieldSelector batteryVoltage from engineCoolantTemperature, engineSpeed, lateralGForce,longitudeGForce, speed type=numeric | inputlookup track_day.csv | fit FieldSelector vehicleType from engineCoolantTemperature, engineSpeed, lateralGForce,longitudeGForce, speed type=categorical | inputlookup passwords.csv | fit HashingVectorizer Passwords ngram_range=1-2 k=10 | inputlookup track_day.csv | fit ICA batteryVoltage, engineSpeed n_components=2 as IC | inputlookup track_day.csv | fit KernelPCA batteryVoltage, engineSpeed k=3 gamma=0.001 as PCA | inputlookup track_day.csv | fit NPR vehicleType from engineSpeed as npr01 | inputlookup track_day.csv | fit PCA engineCoolantTemperature, engineSpeed, lateralGForce,speed k=3 as pca01 | inputlookup track_day.csv | fit TFIDF vehicleType ngram_range=1-2 max_df=0.6 min_df=0.2 stop_words=english as tf01 == Preprocessing | inputlookup track_day_missing.csv | fit Imputer batteryVoltage | inputlookup track_day_missing.csv | fit RobustScaler * | inputlookup track_day_missing.csv | fit StandardScaler *

Comment