📚 Operators represent physical quantities in quantum mechanics. In particular, their eigenvalues give the possible outcomes of measuring the associated physical quantity, and their eigenstates give the state of the system after the measurement. We first introduce some general properties of the eigenvalues and eigenstates of operators, and then explain how to calculate them for a given operator.
🐦 Follow me on Twitter: https://twitter.com/ProfMScience
⏮️ BACKGROUND
Dirac notation in state space: https://youtu.be/hJoWM9jf0gU
Operators: https://youtu.be/pNFna7zZbgE
Representations: https://youtu.be/rp2k2oR5ZQ8
Matrix formulation: https://youtu.be/wIwnb1ldYTI
⏭️ WHAT NEXT?
Hermitian operators: https://youtu.be/XIgDUfyrLAY
Projection operators: https://youtu.be/M9V4hhqyrKQ
Measurements | Concepts: https://youtu.be/u1R3kRWh1ek
Measurements | Maths: https://youtu.be/odLwUXKY0Js
Pauli matrices: https://youtu.be/2MsVD9ufguk
📖 READ MORE
Textbook: Mathematical Methods for Physics and Engineering, K.F. Riley, M.P. Hobson, S.J. Bence, Cambridge University Press, Sections 8.13 to 8.16
~
Director and writer: BM
Producer and designer: MC