MENU

Fun & Interesting

Experimentation and Interference in a Two-Sided Marketplace

Data Council 2,884 9 years ago
Video Not Working? Fix It Now

Simple “random-user” A/B experiment designs fall short in the face of complex dependence structures. These can come in the form of large-scale social graphs or, more recently, spatio-temporal network interactions in a two-sided transportation marketplace. Naive designs are susceptible to statistical interference, which can lead to biased estimates of the treatment effect under study. In this talk we discuss the implications of interference for the design and analysis of live experiments at Lyft. A link is drawn between design choices and a spectrum of bias-variance tradeoffs. We also motivate the use of large-scale simulation for two purposes: as an efficient filter on candidate tests, and as a means of justifying the assumptions underlying our choice of experimental design. ABOUT DATA COUNCIL: Data Council (https://www.datacouncil.ai/) is a community and conference series that provides data professionals with the learning and networking opportunities they need to grow their careers. Make sure to subscribe to our channel for more videos, including DC_THURS, our series of live online interviews with leading data professionals from top open source projects and startups. FOLLOW DATA COUNCIL: Twitter: https://twitter.com/DataCouncilAI LinkedIn: https://www.linkedin.com/company/datacouncil-ai Facebook: https://www.facebook.com/datacouncilai Eventbrite: https://www.eventbrite.com/o/data-council-30357384520

Comment