MENU

Fun & Interesting

Extended Kalman Filter Software Implementation - Sensor Fusion #4 - Phil's Lab #73

Phil’s Lab 64,578 3 years ago
Video Not Working? Fix It Now

Extended Kalman Filter (EKF) implementation and practical considerations. Real-world, real-time implementation and demo on an STM32 microcontroller in C using accelerometer and gyroscope measurements. Part 4 (final) of sensor fusion video series. [SUPPORT] Free trial of Altium Designer: https://www.altium.com/yt/philslab PCBA from $0 (Free Setup, Free Stencil): https://jlcpcb.com/RHS Patreon: https://www.patreon.com/phils94 [LINKS] Git: https://github.com/pms67 Sensor Fusion Part 3: https://youtu.be/hQUkiC5o0JI Sensor Fusion Part 2: https://youtu.be/BUW2OdAtzBw Sensor Fusion Part 1: https://youtu.be/RZd6XDx5VXo IIR Filters: https://youtu.be/QRMe02kzVkA Tag-Connect SWD Probe: https://www.tag-connect.com/product/tc2030-idc-nl Small Unmanned Aircraft (Book): https://uavbook.byu.edu/doku.php Euler Angles: http://control.asu.edu/Classes/MMAE441/Aircraft/441Lecture9.pdf (from slide 17) [TIMESTAMPS] 00:00 Introduction 00:21 Altium Designer Free Trial 00:44 JLCPCB and Design Files 01:06 Pre-Requisites 01:53 'Low-Level' Firmware Overview 07:00 Axis Re-Mapping 08:17 Calibration 09:42 Filtering Raw Measurements 12:12 EKF Algorithm Overview 14:11 EKF Initialisation 17:12 EKF Predict Step 19:26 Matlab/Octave Symbolic Toolbox 21:11 EKF Update Step 22:16 Setting EKF Parameters 23:26 Debug Set-up and Tag-Connect SWD Probe 24:05 Live Demonstration 26:29 Practical Considerations ID: QIBvbJtYjWuHiTG0uCoK

Comment