I skimmed through the main papers in Graph Neural Network (GNN) sampling with a bit of history on graph sampling. At the end, I went through a visual guide on how to do GNN sampling in pytorch geometric.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
🔗 notes+code: https://mashaan14.github.io/YouTube-channel/graph_neural_networks/2024_05_27_GNN_sampling
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
- website https://mashaan14.github.io/mashaan/
- github https://github.com/mashaan14
- X https://twitter.com/mashaan_14
- linkedin https://linkedin.com/in/mashaan
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
- sponsor this channel on GitHub Sponsors:
https://github.com/sponsors/mashaan14
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
📹 Video edit: Adobe Premiere Rush
🎧 Audio enhancement: Adobe Podcast
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Chapters:
00:00 start
00:15 I was confused in the beginning
01:22 sampling on graphs
01:42 History: Jarvis-Patrick paper
04:10 History: spectral clustering
08:54 Our research on graphs
12:11 why do need sampling in GNN?
14:59 GraphSAGE paper
16:25 FastGCN paper
17:05 LADIES paper
18:16 ClusterGCN paper
19:38 a problem that might occur in ClusterGCN
20:38 GraphSAINT paper
21:48 start of the code
24:21 GraphSAGE in pytorch-geometric
28:18 ClusterGCN in pytorch-geometric
33:12 GraphSAINT in pytorch-geometric
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
#graphneuralnetwork #GNN #GCN #graphconvolution #GAT #attention #convolution #jraph #graph #GCN #pytorchgeometric #GCNConv #GATConv #NeighborLoader #ClusterLoader #GraphSAGE #ClusterGCN #GraphSAINT #DeepLearningTutorial #MachineLearningProject #AIResearch #CodingTutorial