MENU

Fun & Interesting

Graphical Analysis of 1D Nonlinear ODEs

Dr. Shane Ross 7,525 4 years ago
Video Not Working? Fix It Now

Introduction to the geometric / graphical approach for analyzing nonlinear ordinary differential equations, including fixed points and their stability. Next, an example: population growth model https://youtu.be/iOumaIR5gzA ► Dr. Shane Ross, Virginia Tech professor (Caltech PhD) Ross Dynamics Lab: http://chaotician.com​ ► Next: Population growth model (logistic model) https://youtu.be/iOumaIR5gzA ► See also 2D and 3D dynamical systems 2D https://youtu.be/oNij9lns5RI 3D https://youtu.be/fIG2jtOhW0U ► Related videos Example of over-damped bead in a rotating hoop https://youtu.be/UOQxFf1eSJs Flows on the circle https://youtu.be/Q_0oB1DHyQU Flows in 2D https://youtu.be/oNij9lns5RI Linearization near fixed points in 2D https://youtu.be/m0d3sLqPftA ► From 'Nonlinear Dynamics and Chaos' (online course). Online course playlist https://is.gd/NonlinearDynamics ► New topics posted regularly. Subscribe https://is.gd/RossLabSubscribe​ ► Course lecture notes (PDF) https://is.gd/NonlinearDynamicsNotes Reference: Steven Strogatz, "Nonlinear Dynamics and Chaos", Chapter 2: Flows on the Line 1D vector field autonomous time-independent nonlinear dynamics dynamical systems differential equations dimensions phase space Poincare Strogatz graphical method Fixed Points Equilibrium Equilibria Stability Stable Point Unstable Point Linear Stability Analysis Vector Field One-Dimensional 1-dimensional Functions #NonlinearDynamics #DynamicalSystems #DifferentialEquations #dynamics #dimensions #PhaseSpace #Poincare #Strogatz #graphicalmethod #FixedPoints #EquilibriumPoints #Stability #StablePoint #UnstablePoint #Stability #LinearStability #LinearStabilityAnalysis #StabilityAnalysis #VectorField #OneDimensional #Functions

Comment