International Math Olympiad, IMO 2023, Problem 4
I solve problem 4 from the International Math Olympiad 2023. I discuss how I came up with a solution to this inequality math competition problem starting from scratch. Follow along if you are interested in getting the insights behind solving math olympiad problems.
Inequalities: https://www.youtube.com/playlist?list=PLvt4fmEPBjqrTh_CV1Ck3QP2jl5J4MAJA
IMO: https://www.youtube.com/playlist?list=PLvt4fmEPBjqrMFbipuG0ounTg0BivlWQ2
High School Math Competitions: https://www.youtube.com/playlist?list=PLvt4fmEPBjqp_F7WsluzHPg8nDzutz4hO
More IMO problems: https://www.youtube.com/playlist?list=PLvt4fmEPBjqrMFbipuG0ounTg0BivlWQ2
Putnam Problems: https://www.youtube.com/playlist?list=PLvt4fmEPBjqrtO0SCh43ob4mgWyh6amBm
IMO 2023:
Problem 1: https://youtu.be/OC_1FPv7ecM
Problem 2: https://youtu.be/2CIEhZKMVbQ
Problem 4: https://youtu.be/0aVWanMl2aA
Problem 5: https://youtu.be/bTUu2G2T-Is
IMO 2022:
Problem 2: https://youtu.be/c0L3P7_aCFc
IMO 2021:
Problem 1: https://youtu.be/BlNDOpUnNIQ
A1: https://youtu.be/RS080HyMZLQ
A2: https://youtu.be/9z5-5wJvero
A3: https://youtu.be/U3eMXwa-iWU
C1: https://youtu.be/bzOTw0U5UDs
IMO 2020:
Problem 2: https://youtu.be/CBULrz-ZAOE
IMO 2019:
N2: https://youtu.be/DvXovQEB-wc
IMO 1961:
Problem 1: https://youtu.be/ix0LshlSUoQ