In this video, I give a brief introduction to distributed computing concepts and show how the Ray framework provides elegant abstractions for scaling data science in Python.
🎥 Next video: https://youtu.be/jua2dFrHSUk
🎞 Playlist: https://youtube.com/playlist?list=PLmetp36hFxeyc9qO_5tPNMW-YD3tZfCFN
📊 Slides: https://github.com/psychothan/scaling-data-science
🔗 Ray Docs: https://docs.ray.io/en/master/index.html
🔗 Original Ray Paper: https://arxiv.org/abs/1712.05889
🔗 Ray Design Patterns: https://docs.google.com/document/d/167rnnDFIVRhHhK4mznEIemOtj63IOhtIPvSYaPgI4Fg
🔗 Ray Architecture: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c
Stay in the loop! 👇
https://discord.gg/nbyZ6EpUum
https://twitter.com/jonathandinu
https://jonathandinu.com
https://jonathans.courses
#python #ray #datascience
✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎
0:00 - Introduction
2:07 - Introduction to the Ray framework
3:30 - Conceptual introduction to distributed systems
5:38 - Challenges of distributed systems
7:25 - Ray internals
11:33 - The larger Ray ecosystem
14:16 - Outro