Learn how to use MATLAB to process lidar sensor data for ground, aerial and indoor lidar processing application. You will learn how to use MATLAB to: Import and visualize live and recorded lidar data Apply deep learning to lidar data Calibrate lidar and cameras Track objects in lidar Create 3-D maps and terrain maps using SLAM Generate C/C++ and GPU Code Highlights Include: Lidar Labeler App: Interactive, semi-automated, and custom automated labeling of lidar point clouds Lidar-Camera Calibration: Calibrate lidar and camera sensors to estimate cross-sensor coordinate transform Deep Learning for Lidar Point Cloud Processing: Use deep learning networks to detect and segment objects in lidar point cloud data Shape Fitting: Fit shape and track detected objects in a lidar point cloud sequence Feature Matching: Extract and match lidar point cloud features Lidar Object Tracking Simulating Lidar Sensor Data 2-D Lidar Processing: Simulate and process 2-D laser scan data and estimate the pose between two scans Velodyne LiDAR Streaming: Connect and stream lidar point clouds from Velodyne LiDAR sensors Lidar File Readers: Support for Ibeo sensor, LAS, and LAZ file formats Code generation for CPU and GPU ___________________________________________________________ Minhaj Falaki – Product Manager, MathWorks India ___________________________________________________________ לנושאים נוספים ויצירת קשר: לאתר: https://www.systematics.co.il/products/mathworks/main/ לאירועים נוספים: https://www.systematics.co.il/products/mathworks/events/ לבלוג: https://www.systematics.co.il/category/matlab-simulink-blog/ לפייסבוק: https://www.facebook.com/MatlabIsrael/ ללינקדין: https://www.linkedin.com/groups/1774805/