MENU

Fun & Interesting

Machine Learning for Real-Time Anomaly Detection in Network Time-Series Data - Jaeseong Jeong

RISE SICS 31,907 8 years ago
Video Not Working? Fix It Now

Real-time anomaly detection plays a key role in ensuring that the network operation is under control, by taking actions on detected anomalies. In this talk, we discuss a problem of the real-time anomaly detection on a non-stationary (i.e., seasonal) time-series data of several network KPIs. We present two anomaly detection algorithms leveraging machine learning techniques, both of which are able to adaptively learn the underlying seasonal patterns in the data. Jaeseong Jeong is a researcher at Ericsson Research, Machine Learning team. His research interests include large-scale machine learning, telecom data analytics, human behavior predictions, and algorithms for mobile networks. He received the B.S., M.S., and Ph.D. degrees from Korea Advanced Institute of Science and Technology (KAIST) in 2008, 2010, and 2014, respectively.

Comment