MENU

Fun & Interesting

Orthogonal Basis Functions in the Fourier Transform

Video Not Working? Fix It Now

Explains how the Fourier Transform equation is in fact a projection of the time domain signal onto a set of orthogonal basis functions (the complex sinusoids).
Related videos: (see: http://iaincollings.com)
• What is the Fourier Transform used for? https://youtu.be/VtbRelEnms8
• Visualising the Fourier Transform https://youtu.be/U7ii8agAhIs
• What is the Fourier Transform? https://youtu.be/G74t5az6PLo
• Fourier Transform Equation Explained https://youtu.be/8V6Hi-kP9EE
• Fourier Transform of cos function https://youtu.be/McITNfo3LKc
• OFDM Waveforms https://youtu.be/F6B4Kyj2rLw
For a full list of Videos and Summary Sheets, goto: http://www.iaincollings.com

* Note that in the final expression, I really should have put an extra set of brackets around the argument of each of the two cos functions. ie. inside the final integral it should be 1/2 cos((ω1 + ωb) t) + 1/2 cos((ω1 - ωb) t)

.

Comment