MENU

Fun & Interesting

Statistics with R (3) - Generalized, linear, and generalized least squares models (LM, GLM, GLS)

Christoph Scherber 128,925 lượt xem 11 years ago
Video Not Working? Fix It Now

In this video, I show how how to implement linear models, generalized linear models and generalized least squares models in R. Using the "airquality" dataset, I show how to fit and interpret the models. The core of the session is the interpretation of partial slope coefficients in Poisson generalized linear models. Finally, I give an outlook on generalized additive models which will be covered in one of the next sessions.

The R code used in this video is:


airquality

plot(Ozone~Wind,airquality)

model1=lm(Ozone~Wind,airquality)
plot(model1)
coef(model1)

(Intercept) Wind
96.872895 -5.550923

#predictions for Wind speeds of 19 and 20 mph:

Ozone1=coef(model1)[1]+coef(model1)[2]*19
Ozone2=coef(model1)[1]+coef(model1)[2]*20

Ozone1
Ozone2

##

model2=glm(Ozone~Wind,airquality,family=poisson)
coef(model2)

(Intercept) Wind
5.0795877 -0.1488753

Ozone1.glm=exp(coef(model2)[1]+coef(model2)[2]*19)
Ozone2.glm=exp(coef(model2)[1]+coef(model2)[2]*20)

Ozone2.glm/Ozone1.glm
0.8616765


exp(coef(model2)[2]) #exp(-0.1488753 )

#0.8616765

##

library(nlme)

model3=gls(Ozone~Wind,airquality)
summary(airquality$Ozone)

model3=gls(Ozone~Wind,airquality,na.action=na.exclude)

head(airquality)

airquality$Date=
as.Date(paste(1973,airquality$Month,airquality$Day,sep="-"))

library(lattice)

xyplot(Ozone~Date,airquality)

model4=gls(Ozone~Wind*Date,airquality,na.action=na.exclude)
air2=subset(airquality,complete.cases(Ozone))

model5=gls(Ozone~Wind*Date,air2)
plot(ACF(model5,form=~Date),alpha=0.05)

model6=update(model5,correlation=corAR1())

library(MuMIn)

AICc(model5,model6)

df AICc
model5 5 1099.40
model6 6 1095.21

summary(model6)

Comment