Support Vector Machines are one of the most mysterious methods in Machine Learning. This StatQuest sweeps away the mystery to let know how they work.
Part 2: The Polynomial Kernel: https://youtu.be/Toet3EiSFcM
Part 3: The Radial (RBF) Kernel: https://youtu.be/Qc5IyLW_hns
NOTE: This StatQuest assumes you already know about...
The bias/variance tradeoff: https://youtu.be/EuBBz3bI-aA
Cross Validation: https://youtu.be/fSytzGwwBVw
ALSO NOTE: This StatQuest is based on description of Support Vector Machines, and associated concepts, found on pages 337 to 354 of the Introduction to Statistical Learning in R: http://faculty.marshall.usc.edu/gareth-james/ISL/
I also found this blogpost helpful for understanding the Kernel Trick: https://blog.statsbot.co/support-vector-machines-tutorial-c1618e635e93
For a complete index of all the StatQuest videos, check out:
https://statquest.org/video-index/
If you'd like to support StatQuest, please consider...
Patreon: https://www.patreon.com/statquest
...or...
YouTube Membership: https://www.youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw/join
...buying one of my books, a study guide, a t-shirt or hoodie, or a song from the StatQuest store...
https://statquest.org/statquest-store/
...or just donating to StatQuest!
https://www.paypal.me/statquest
Lastly, if you want to keep up with me as I research and create new StatQuests, follow me on twitter:
https://twitter.com/joshuastarmer
0:00 Awesome song and introduction
0:40 Basic concepts and Maximal Margin Classifiers
4:35 Soft Margins (allowing misclassifications)
6:46 Soft Margin and Support Vector Classifiers
12:23 Intuition behind Support Vector Machines
15:25 The polynomial kernel function
17:30 The radial basis function (RBF) kernel
18:32 The kernel trick
19:31 Summary of concepts
#statquest #SVM