MENU

Fun & Interesting

The Mathematics of Diffie-Hellman Key Exchange | Infinite Series

PBS Infinite Series 88,670 7 years ago
Video Not Working? Fix It Now

Viewers like you help make PBS (Thank you 😃) . Support your local PBS Member Station here: https://to.pbs.org/donateinfi Symmetric keys are essential to encrypting messages. How can two people share the same key without someone else getting a hold of it? Upfront asymmetric encryption is one way, but another is Diffie-Hellman key exchange. This is part 3 in our Cryptography 101 series. Check out the playlist here for parts 1 & 2: https://www.youtube.com/watch?v=NOs34_-eREk&list=PLa6IE8XPP_gmVt-Q4ldHi56mYsBuOg2Qw Tweet at us! @pbsinfinite Facebook: facebook.com/pbsinfinite series Email us! pbsinfiniteseries [at] gmail [dot] com Previous Episode Topology vs. “a” Topology https://www.youtube.com/watch?v=tdOaMOcxY7U&t=13s Symmetric single-key encryption schemes have become the workhorses of secure communication for a good reason. They’re fast and practically bulletproof… once two parties like Alice and Bob have a single shared key in hand. And that’s the challenge -- they can’t use symmetric key encryption to share the original symmetric key, so how do they get started? Written and Hosted by Gabe Perez-Giz Produced by Rusty Ward Graphics by Ray Lux Assistant Editing and Sound Design by Mike Petrow and Meah Denee Barrington Made by Kornhaber Brown (www.kornhaberbrown.com) Thanks to Matthew O'Connor, Yana Chernobilsky, and John Hoffman who are supporting us on Patreon at the Identity level! And thanks to Nicholas Rose, Jason Hise, Thomas Scheer, Marting Sergio H. Faester, CSS, and Mauricio Pacheco who are supporting us at the Lemma level!

Comment