MENU

Fun & Interesting

Vector-Quantized Variational Autoencoders (VQ-VAEs) | Deep Learning

DeepBean 11,182 8 months ago
Video Not Working? Fix It Now

The Vector-Quantized Variational Autoencoder (VQ-VAE) forms discrete latent representations, by mapping encoding vectors to a limited size codebook. But, how does it do this, and why would we want to do it anyway? Link to my video on VAEs: https://www.youtube.com/watch?v=HBYQvKlaE0A&t=963s Timestamps ------------------- 00:00 Introduction 01:09 VAE refresher 02:42 Quantization 04:46 Posterior 06:09 Prior 07:06 Learned prior for sampling 09:55 Reconstruction loss 10:32 Straight-through estimation 11:50 Codebook loss 12:53 Commitment loss 14:33 Benefits of quantization 16:58 Application examples Links --------- - VQ-VAE paper: https://arxiv.org/abs/1711.00937 - Straight-through estimation paper: https://arxiv.org/abs/1308.3432 - PixelCNN paper: https://arxiv.org/abs/1606.05328 - WaveNet paper: https://arxiv.org/abs/1609.03499 - Text-to-Image paper: https://arxiv.org/abs/2111.14822 - Jukebox paper: https://arxiv.org/abs/2005.00341 - PyTorch implementation: https://github.com/airalcorn2/vqvae-pytorch - Keras implementation: https://keras.io/examples/generative/vq_vae/

Comment