MENU

Fun & Interesting

What is Balancing a binary tree and why do we need balancing

Simple Snippets 39,241 4 years ago
Video Not Working? Fix It Now

A Binary Tree is called BALANCED binary tree (or binary search tree) IF the difference between the HEIGHT of the Left Sub Tree & Right Sub Tree for every node is not more than k (usually k = 1) Height of a binary tree is the number of edges/links on the longest path between the root node & leaf node. In this tutorial we will answer 2 main questions - 1) What does Balancing a Binary Tree mean ? 2) Why is Balancing a binary Tree Important ? --------------------------------------------------------------------------------------------- Full Code & Other resources - https://simplesnippets.tech/what-is-binary-search-tree-bst-with-full-code-dsa/ Full DSA playlist - https://www.youtube.com/watch?v=XCyuHSJS7XE&list=PLIY8eNdw5tW_zX3OCzX7NJ8bL1p6pWfgG Full C++ Programming for Beginners Course - https://www.youtube.com/watch?v=AKNGgAXTark&list=PLIY8eNdw5tW_o8gsLqNBu8gmScCAqKm2Q --------------------------------------------------------------------------------------------- Support Simple Snippets by Donations - Google Pay UPI ID - tanmaysakpal11@okicici PayPal - paypal.me/tanmaysakpal11 --------------------------------------------------------------------------------------------- Timecodes - 00:00 Introduction 01:11 What is Tree Balancing ? 12:58 Why Balancing Tree is needed ? --------------------------------------------------------------------------------------------- Simple Snippets Official Website - http://simplesnippets.tech/ Simple Snippets on Facebook - https://www.facebook.com/simplesnippets/ Simple Snippets on Instagram - https://www.instagram.com/simplesnippets/ Simple Snippets on Twitter - https://twitter.com/simplesnippet Simple Snippets Google Plus Page - https://plus.google.com/+SimpleSnippets Simple Snippets email ID - [email protected] For More Technology News, Latest Updates and Blog articles visit our Official Website - http://simplesnippets.tech/ #datastructures #binarytree #binarysearchtree

Comment