MENU

Fun & Interesting

Blowing up the Transformer Encoder!

CodeEmporium 22,540 lượt xem 2 years ago
Video Not Working? Fix It Now

Let's deep dive into the transformer encoder architecture.

ABOUT ME
⭕ Subscribe: https://www.youtube.com/c/CodeEmporium?sub_confirmation=1
📚 Medium Blog: https://medium.com/@dataemporium
💻 Github: https://github.com/ajhalthor
👔 LinkedIn: https://www.linkedin.com/in/ajay-halthor-477974bb/

RESOURCES
[ 1🔎] My playlist for all transformer videos before this: https://www.youtube.com/watch?v=QCJQG4DuHT0&list=PLTl9hO2Oobd97qfWC40gOSU8C0iu0m2l4
[ 2 🔎] Transformer Main Paper: https://arxiv.org/abs/1706.03762

PLAYLISTS FROM MY CHANNEL
⭕ ChatGPT Playlist of all other videos: https://youtube.com/playlist?list=PLTl9hO2Oobd9coYT6XsTraTBo4pL1j4HJ
⭕ Transformer Neural Networks: https://youtube.com/playlist?list=PLTl9hO2Oobd_bzXUpzKMKA3liq2kj6LfE
⭕ Convolutional Neural Networks: https://youtube.com/playlist?list=PLTl9hO2Oobd9U0XHz62Lw6EgIMkQpfz74
⭕ The Math You Should Know : https://youtube.com/playlist?list=PLTl9hO2Oobd-_5sGLnbgE8Poer1Xjzz4h
⭕ Probability Theory for Machine Learning: https://youtube.com/playlist?list=PLTl9hO2Oobd9bPcq0fj91Jgk_-h1H_W3V
⭕ Coding Machine Learning: https://youtube.com/playlist?list=PLTl9hO2Oobd82vcsOnvCNzxrZOlrz3RiD


MATH COURSES (7 day free trial)
📕 Mathematics for Machine Learning: https://imp.i384100.net/MathML
📕 Calculus: https://imp.i384100.net/Calculus
📕 Statistics for Data Science: https://imp.i384100.net/AdvancedStatistics
📕 Bayesian Statistics: https://imp.i384100.net/BayesianStatistics
📕 Linear Algebra: https://imp.i384100.net/LinearAlgebra
📕 Probability: https://imp.i384100.net/Probability

OTHER RELATED COURSES (7 day free trial)
📕 ⭐ Deep Learning Specialization: https://imp.i384100.net/Deep-Learning
📕 Python for Everybody: https://imp.i384100.net/python
📕 MLOps Course: https://imp.i384100.net/MLOps
📕 Natural Language Processing (NLP): https://imp.i384100.net/NLP
📕 Machine Learning in Production: https://imp.i384100.net/MLProduction
📕 Data Science Specialization: https://imp.i384100.net/DataScience
📕 Tensorflow: https://imp.i384100.net/Tensorflow

TIMESTAMPS
0:00 Introduction
0:28 Encoder Overview
1:25 Blowing up the encoder
1:45 Create Initial Embeddings
3:54 Positional Encodings
4:54 The Encoder Layer Begins
5:02 Query, Key, Value Vectors
7:37 Constructing Self Attention Matrix
9:44 Why scaling and Softmax?
10:53 Combining Attention heads
12:46 Residual Connections (Skip Connections)
13:45 Layer Normalization
16:36 Why Linear Layers, ReLU, Dropout
17:46 Complete the Encoder Layer
18:46 Final Word Embeddings
20:04 Sneak Peak of Code

Comment