Welcome to the Databricks & PySpark full-course tutorial! If you're looking to become a Data Engineer, Data Analyst, or Big Data Expert, this video is for you. We take a hands-on approach to mastering Databricks using PySpark, covering everything from basics to advanced concepts.
This is your one-stop guide to understanding how PySpark works inside Databricks, with real-world examples and practical demonstrations.
π‘ Why Learn Databricks & PySpark?
Fast & Scalable: Apache Spark is 100x faster than traditional big data tools.
Easy to Use: PySpark makes working with big data simple & efficient.
Industry Demand: Databricks and Spark are widely used in AI, ML, and Data Engineering.
Cloud-Ready: Works with AWS, Azure, and Google Cloud.
π₯ What Youβll Learn in This Course
π Step 1: Loading & Understanding Data
β
Reading CSV files in Databricks
β
Checking schema and data types
π Step 2: Data Cleaning & Transformation
β
Renaming columns for better clarity
β
Converting categorical values into numerical format
β
Handling NULL values using fillna(), dropna()
π Step 3: Working with DataFrames
β
Using filter(), sort() operations
β
Performing column operations like withColumn(), alias(), and cast()
π Step 4: Advanced PySpark Functions
β
Using explode(), collect_list(), pivot(), when(), otherwise()
β
String functions: initcap(), upper(), lower()
β
Date functions: current_date(), datediff(), date_add(), year(), month()
π Step 5: Joins & Data Merging
β
Inner, Left, Right & Outer Joins
β
Union & UnionByName for combining datasets
π Step 6: Window Functions & Ranking
β
Using rank(), dense_rank(), and cumulative sum()
β
Partitioning and ordering data efficiently
π Step 7: User Defined Functions (UDFs)
β
Writing custom functions in PySpark
β
Applying UDFs to transform and clean data
π Step 8: Writing & Saving Data
β
Writing datasets in CSV, JSON, ORC, and Delta formats
β
Overwriting, appending, and handling errors while saving
π Timestamps -
00:00:00 - Intro
00:00:28 - A] Agenda
00:00:51 - B] Data Understanding
00:02:05 - C] Compute Creation
00:02:43 - D] Data Ingestion
00:03:14 - E] Folder & Notebook Creation
00:05:04 - F] Data Reading
00:11:39 - G] Data Cleaning & Transformation
00:11:45 - 1. Column Name Rename
00:14:44 - 2. When - Otherwise, Col, Lit
00:20:08 - 3. WithColumn, regexp_replace, Col
00:22:41 - 4. FillNa
00:25:42 - 5. Select, Alias
00:28:25 - 6. Filter
00:30:16 - 7. Sort
00:32:18 - 8. DropDuplicates
00:33:42 - 9. Select, Initcap, Lower, Upper
00:36:19 - 10. DropNa
00:41:37 - 11.FillNa - Another Example
00:43:58 - 12. Drop Column
00:45:01 - 13. Joins - Inner, Left, Right, Outer
00:56:07 - 14.Union & UnionByName
01:01:23 - 15. Date Functions
01:13:33 - 16. Array
01:16:08 - 17. Explode
01:18:44 - 18. Collect_List
01:22:58 - 19. Count
01:24:49 - 20.PIVOT
01:30:07 - 21. When-Otherwise
01:33:15 - 22. Window - Rank & Dense Rank
01:40:05 - 23. Cumulative Sum
01:44:51 - 24.User Defined Function
01:54:58 - 25. Data Export with different modes & different formats
02:05:09 - Conclusion
π Dataset Used: https://www.kaggle.com/datasets/arashnic/hr-analytics-job-change-of-data-scientists
π Relevant Videos:
1. From Data to Business Insights: PySpark on Databricks for Amazon Prime Dataset Analysis ππ - https://youtu.be/7aZGAf8Luys?si=c7N4eVkX07DYva2_
2. Databricks Journey Begins: Compute, Catalog, Workflows, Data Management, and More! - https://youtu.be/4qreAFJfID4?si=my-Y7qD69SfAS-zP
3. Apache Spark & Databricks: Lazy Evaluation| Fault Tolerance| DAG| Catalyst Optimizer(Theory) - Part 4 - https://youtu.be/12IDOqhsv2w?si=Dfxi2WZZkzUdaRoe
4. Spark & Databricks: RDDs| DataFrames| Datasets| Spark Ecosystem| RDD Operations (Theory) - Part 3 - https://youtu.be/5Ckap52tuHk?si=hbPYC7U4zXHeYx7l
5. Spark & Databricks - Spark Architecture |Memory Management |Application Workflow (Theory) - Part 2 - https://youtu.be/T6CGh-R9C84?si=koVHbkD2Cks9z2w_
6. Introduction to Apache Spark | Databricks (Theory) - Part 1 - https://youtu.be/lbFax1jxSec?si=WNWL7nhon8mJ-Wmf
π Like, Share & Subscribe for more Big Data & Analytics tutorials!
π Turn on notifications to stay updated on new videos.
#databricks #databricksforbeginners #spark #apachespark #pyspark #bigdata #bigdataanalytics #dataengineering #dataengineer #machinelearning #datavisualization #python #databricksai