In this video I compare and contrast the Apache Spark and the Ray frameworks, including how they differ conceptually, differences between their APIs, and the common use cases for each. https://github.com/psychothan/scaling-data-science
🎥 previous video: https://youtu.be/Xa_94PuUYQI
🎞 playlist: https://youtube.com/playlist?list=PLmetp36hFxeyc9qO_5tPNMW-YD3tZfCFN
🔗 Original Ray Paper: https://arxiv.org/abs/1712.05889
🔗 Original Spark Paper: http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf
🔗 Spark Documentation: https://spark.apache.org
🔗 Ray Documentation: https://ray.io
Stay in the loop! 👇
https://discord.gg/nbyZ6EpUum
https://twitter.com/jonathandinu
https://jonathandinu.com
https://jonathans.courses
#python #ray #spark
✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎⚡︎✌︎
0:00 - Introduction
0:52 - Comparing the Spark and Ray APIs
5:49 - Spark vs. Ray Use Cases
8:38 - Spark vs. Ray Code Examples
10:42 - Summary
14:06 - Outro